Histone H2AX phosphorylation independent of ATM after X-irradiation in mouse liver and kidney in situ.
نویسندگان
چکیده
Histone H2AX undergoes phosphorylation at Ser-139 (gamma-H2AX) rapidly in response to DNA double-strand breaks (DSBs) induced by ionizing radiation. The post-translational modification of H2AX plays a central role in responses to radiation, including the repair of DSBs. Although ataxia telangiectasia mutated (ATM) kinase phosphorylates Ser-139 of H2AX in vitro, the post-translational modification pattern and the modifier of H2AX in organs in vivo are not yet well understood. In this study, we detected phosphorylation of H2AX at Ser-139 in cells of the mouse ear, liver, and kidney after X-irradiation. Moreover, the phosphorylation of H2AX was regulated depending on not only the cell type, but also the organ type and the localization of a cell type in an organ. Following X-irradiation, H2AX was phosphorylated in the liver and kidney of ATM gene knockout mice, suggesting that ATM kinase is not essential for phosphorylation of H2AX in these organs after X-irradiation in vivo.
منابع مشابه
γ-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review
Background: H2AX is a histone variant that is systematically found and ubiquitously distributed throughout the genome. DNA double-strand breaks (DSBs) induce phosphorylation of H2AX at serine 139 (γH2AX), an immunocytochemical assay with antibodies recognizing γH2AX has become the gold standard for the detection of DSBs. The importance of this assay to investigate different individu...
متن کاملExpression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays
Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...
متن کاملEvaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients
Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...
متن کاملATM induces radioresistance of non-small cell lung cancer A549 cells by downregulation of MDMX
Background: Tumor radioresistance leads to a reduction in the efficiency of radiation therapy. It is very important to explore the cellular mechanisms leading to radioresistance and to find potential therapeutic targets, which might improve the efficacy of radiation therapy. This study was to investigate the role of ataxia-telangiectasia mutated (ATM) and murine double minute X (MDMX) in radior...
متن کاملLocalization of DNA Double-Strand Breaks in Mouse Tissues after X-irradiation
Localization of DNA Double-Strand Breaks in Mouse Tissues after X-irradiation A. Raths 1 , A. Bock 1 , S. Grudzenski 1 , D. Deckbar 1 , S. Conrad 1 and M. Löbrich 1 1 Darmstadt University of Technology, Germany; GSI; The most deleterious form of IR (ionizing radiation)induced DNA damages is the DNA double strand break (DSB), and its efficient repair is essential for the maintenance of the genom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of radiation research
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2008